

**NEW RESEARCH PROPOSAL** 

## Q-05-NA

## Using thermally modified wood for manufacturing mass timber elements with improved dimensional stability

PI(s): V. Nasir, L. Schimleck, I. Hafez, S. Leavengood Site: OSU

Anticipated Start Date: August 2024 | Expected Duration: 12 Months

WBC SPRING 2024 INDUSTRY ADVISORY BOARD MEETING



## Need & Industrial Relevance | Goals & Objectives

#### **Need & Industrial Relevance**

The growing interest in using mass timber structures necessitates addressing the durability of these products. An approach towards enhancing the durability and dimensional stability is wood thermal modification. Despite the proven effectiveness of this process on wood durability, questions raise on the mechanical performance of thermally modified wood products. Also, limited research is available on the gluing and bonding performance of these products. Thus, there is a need to assess the durability, mechanical and bonding performance of laminated thermally modified wood products.

#### **Research Roadmap Topics**

TOPIC 2024-09: Improved dimensional stability so that EWP can compete with non-wood options.

#### Long Term Goals

Improving the dimensional stability and durability of engineered wood products.

#### **Objectives**

The specific objectives of the project are to:

- 1) Testing the mechanical performance and dimensional stability of thermally modified Western hemlock
- 2) Preparing laminated thermally-modified wood samples.
- 3) Assessing the shear strength and bonding quality of the laminated samples.
- 4) Effect of surface treatments on the bonding performance of the laminated samples.



### **Materials and Methods**

#### Materials

Thermally modified Western hemlock treated at 190°C, 212°C, and 230°C.

#### **Dimensional Stability Assessment**

treated and untreated samples are submerged in water at room temperature. The samples are weighed, and their dimensions are measured before and after immersion in water for 24 h. Finally, all samples will be oven-dried at 103 ± 2 °C for 24 h, and their dimensions and weight will be measured again. The volumetric swelling coefficient and water absorption will then be calculated, accordingly.

#### **Mechanical Properties**

Static bending test will be performed. Alternative option includes nondestructive stress-wave methods for MOE prediction.

#### Lamination and bonding assessment

- Two types of planing condition to produce surface with different roughness
- Lamination using one-component polyurethane (PUR) [or other options suggested by WBC members].
- Block shear samples for testing the "Shear Strength of Adhesive Bonds"
- Evaluation of percent wood failure (PWF)

WBC SPRING 2024 INDUSTRY ADVISORY BOARD MEETING



## **Outcomes and Deliverables**

| Expected Outcome                                                                                      | Deliverable (s)                                                | 2024 |   | 2025 |   |   |   |   |   |   |   |   |   |   |   |   |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------|---|------|---|---|---|---|---|---|---|---|---|---|---|---|
|                                                                                                       |                                                                | Α    | S | 0    | N | D | J | F | М | Α | J | J | Α | S | 0 | N |
| Dimensional stability and mechanical performance of Western hemlock treated at different temperatures | Properties of control and treated wood prior to lamination.    |      |   |      |   |   |   |   |   |   |   |   |   |   |   |   |
| Preparing laminated samples using control and thermally modified wood samples.                        | Sample preparation                                             |      |   |      |   |   |   |   |   |   |   |   |   |   |   |   |
| Applying different surface treatments                                                                 | Sample preparation                                             |      |   |      |   |   |   |   |   |   |   |   |   |   |   |   |
| Testing dimensional stability                                                                         | Post-lamination properties: dimensional stability              |      |   |      |   |   |   |   |   |   |   |   |   |   |   |   |
| Mechanical and bonding performance evaluation                                                         | Post-lamination properties: mechanical and bonding performance |      |   |      |   |   |   |   |   |   |   |   |   |   |   |   |
| Documentation                                                                                         | Project progress/summary report                                |      |   |      |   |   |   |   |   |   |   |   |   |   |   |   |



The project outcome will be used to assess the effectiveness of using thermally modified wood in manufacturing laminated products. The project could be expanded in next years by: (1) studying methods to improve the mechanical properties; (2) methods to enhance the bonding performance (e.g. different surface treatments); (3) preparing thermally modified wood veneer and manufacturing veneer-based product using the thermally modified wood; (4) conducting the methodology on other wood species of interest. Some of the beneficial impacts of the project include:

- 1. A baseline towards improving the durability and dimensional stability of engineered wood products,
- 2. Proposing thermal modification, as an environmentally friendly method and feasible at industrial scale, to enhance the durability and dimensional stability,
- 3. Providing a database for the bonding performance of laminated thermally-modified wood,
- 4. Helpful skills gained by graduate student,
- 5. Offering industry a feasibility study on the opportunities and challenges of applying thermal modification in manufacturing of laminated wood products.



## Budget

#### Budget justification & request for funding

Funds are requested to support a Graduate Research Assistant (\$ 17,300).

\$ 1,400 was requested for materials and supplies (e.g. resin).

- No fund is requested for the thermally modified wood samples and testing equipment.
- Thermally modified Western hemlock is already provided.
- All testing and analysis will be conducted at OSU.

| BUDGET                           | AMOUNT    |  |  |  |  |  |
|----------------------------------|-----------|--|--|--|--|--|
| First Year Expenses              |           |  |  |  |  |  |
| GRA & Benefits                   | \$ 17,300 |  |  |  |  |  |
| Tuition & Fees                   |           |  |  |  |  |  |
| Materials/Supplies               | \$ 1,400  |  |  |  |  |  |
| Travel                           |           |  |  |  |  |  |
| Other (specify):                 |           |  |  |  |  |  |
| YEAR 1 TOTAL:                    | \$ 18,700 |  |  |  |  |  |
| Expected future request amounts: |           |  |  |  |  |  |



# **Thank You**

# **Questions?**

WBC SPRING 2024 INDUSTRY ADVISORY BOARD MEETING