

WBC NEW PROJECT PROPOSAL

Project Title:	Robust fire test method for the performance evaluation of wood-based composites						
Expected Duration:	1 year	Start Date:	09/01/2024	Site:	Auburn University		
Investigator(s):	Zahra Naghizadeh, David Scarborough, Maria S. Peresin			Submitted by:	Maria S. Peresin		
Related to Topic/Theme:	Q-01-HI: Identifying Adhesive Bondline Quality to Improve Cross-Laminated Timber Performance						

GOALS & OBJECTIVES:

• Develop an inexpensive method for quickly and efficiently evaluating the fire resistance and flame spread properties of small samples of wood products.

• Understand how non-uniformities such as adhesive joints, knots, and cracks affect the fire resistance of the base material. **The Problems:**

The two existing standardized methods (E-84 and E-119) provide a uniform method for evaluating the fire resistance across the industry. However, these tests:

1) Large samples 2) Time-consuming 3) Expensive to conduct.

EXPECTED PRACTICAL IMPLICATIONS / IMPACTS:

1) Develop a method to quickly evaluate the fire performance of wood-based materials under different fire scenarios.

2) Measure the effect of the wood products' defects and bond line imperfection on the fire test results.

OUTCOMES & DELIVERABLES:

TASK	DELIVERABLE	Q1	Q2	Q3	Q4
Study different fire test	Fire test				
geometries (vertical,	method				
horizontal, and angled) to	development				
evaluate wood products.					
Develop a small version of the	Mini tunnel				
tunnel test to compare and	test				
validate the results					
Study the effect of the wood	Data on the				
products' defects on the test	effect of				
results.	defects				
Evaluate the proposed	Test method				
method and approach for	for adhesive				
adhesive joints.	joints				

Budget Justification & Request for Funding:				
Funding for future MSc student:	Budget			
	1 yr expenses	\$52,599	l	
GRA & benefits: 12 months	GRA & Benefits	\$22,920	l	
Tuition: 10%	Tuition and Fees	\$2,300	l	
Materials costs:	Materials/Supplies	\$7,000		
General lab supplies	Year 1 Total	\$52 <i>,</i> 599		

EXPERIMENTAL PLAN:

The sample will be exposed to different geometries of fire of known heat release and mass flow rates positioned at different locations relative to the sample.

Fig.1. Fire test set up.

- The method used infrared thermal imaging and dynamic load cells to simultaneously determine the temporal and spatial variation of sample surface temperature and temporal variation in sample mass loss.
- From the IR camera, maximum temperature at the back side of the sample vs time will be determined, and the time to reach 230 °C will be recorded.

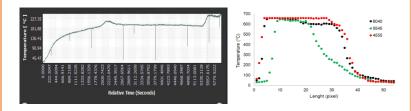


Fig. 2. Maximum temperature vs time (left), flame spread rate (right)

- The results will be reported as mass loss per time to reach a specific temperature and fire spread rate.
- We will test this method for adhesive joints and will study the effect of defects (knots, cracks, etc.) in either wood or composite on the fire test results.

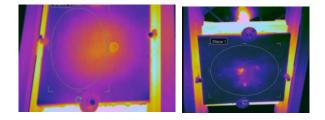


Fig.3. Effect of defects on the fire test results.

A small-scale tunnel test equipment, ASTM E84, will be built to compare the results with and to validate the proposed method.
TRL of this project is 5-6, considering successful proof of concept in our prior work and conducted studies and if funded, at the end of one-year proposal, we will be able to increase the TRL level to 7-8.