

NEW RESEARCH PROPOSAL

Project code: Q-11-PE

Robust fire test method for the performance evaluation of wood-based composites

PI(s): Zahra Naghizadeh, David Scarborough, Maria S. Peresin Site: AU

Anticipated Start Date: September 2024 Expected Duration: 12 months

Need & Industrial Relevance

- Knowing the fire resistance of wood-based materials is essential to minimize the impact of fires.
- The two existing standardized methods (E-84 and E-119) provide a uniform method for evaluating the fire resistance across the industry.
 However, these tests:
- 1) Require large samples 2) Time-consuming 3) Expensive to conduct.

Research Roadmap Topics

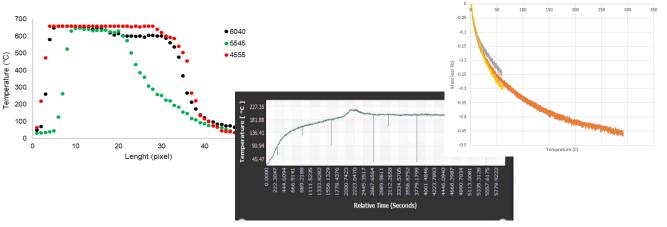
- 2024-05
- Q-01-HI

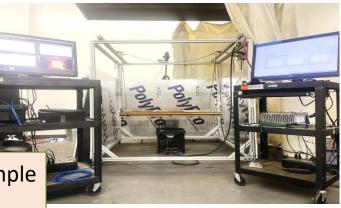
Long Term Goals

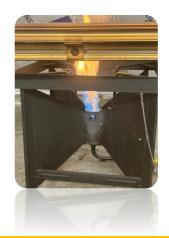
- Create a feasible and fast pipeline for characterizing the fire performance of different wood-based materials
- Generate a database of the fire performance of woodbased products considering defects and imperfection in wood, wood composites and adhesive joints.

Objectives

- Develop an inexpensive method for quickly and efficiently evaluating the fire resistance and flame spread properties of small samples of wood products.
- Understand how non-uniformities such as adhesive joints, knots, and cracks affect the fire resistance of the base material.

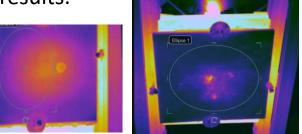

Materials and Methods


Fire test set up:


- Infrared thermal imaging
- Dynamic load cells
- Propane mass flow rate controller

To simultaneously determine the temporal and spatial variation of sample surface temperature and temporal variation in sample mass loss.

The results will be reported as flame spread rate and mass loss per time to reach a specific temperature at the back side of the samples.



 A small-scale tunnel test, ASTM E84, to
compare the results with and to validate the proposed method.

Testing this method for adhesive joints and will study the effect of defects (knots, cracks, etc.) in either wood or composite on the fire test results.

Outcomes and Deliverables

Task	Deliverable	2024		2024			2025							
		S	0	Ν	D	J	F	Μ	А	Μ	J	J	Α	
Study different fire test geometries (vertical, horizontal,	Fire test method													
and angled) to evaluate wood products .	development													
Develop a small version of the tunnel test to compare	Mini tunnel test prepared													
and validate the results														
Study the effect of the wood products' defects on the	Data on the effect of													
test results.	wood/composite defects													
Evaluate the proposed method and approach for	Test method for adhesive													
adhesive joints.	joints													
	Final WBC report													
Peer Reviewed Publication	Publish data summary in													
	1-2 publications													

1) Method development:

Develop fire test protocol and a method to quickly evaluate the fire performance of different wood-based materials under different fire geometries, scenarios, and intensities.

2) Data produced:

- The effect of the wood products' defects on their fire performance as well as on the test results.
- The effect of glue-line imperfection in mass timber on the fire test results.

3) Supporting Masters student

Funding for Future Masters Student

GRA & Benefits 12 months of Masters Student

Tuition 10%

Materials Costs General Lab Supplies

Budget	Amount				
First year expenses	\$52,599				
GRA & Benefits	\$22,920				
Tuition and Fees	\$2,300				
Materials/Supplies	\$7,000				
Travel	\$9,000				
Others (specify)	Others (specify)				
Year 1 total	\$52,599				
Expected future request: \$52,599					

Thank You

Questions?